nirS-containing denitrifier communities in the water column and sediment of the Baltic Sea

نویسندگان

  • S. Falk
  • M. Hannig
  • G. Braker
چکیده

The aim of this study was to compare structural differences in the nirS-type denitrifying microbial communities along the environmental gradients observed in the water column and coastal sediments of the Baltic Sea. To link community structure and environmental gradients, denitrifier communities were analyzed by terminal restriction fragment length polymorphism (T-RFLP) based on nirS as a functional marker gene for denitrification. nirS-type denitrifier community composition was further evaluated by phylogenetic analysis of nirS sequences from clone libraries. T-RFLP analysis indicated some overlap but also major differences between communities from the water column and the sediment. Shifts in community composition along the biogeochemical gradients were observed only in the water column while denitrifier communities were rather uniform within the upper 30 mm of the sediment. Specific terminal restriction fragments (T-RFs) indicative of the sulfidic zone suggest the presence of nitrate-reducing and sulfide-oxidizing microorganisms that were previously shown to be important at the suboxic-sulfidic interface in the water column of the Baltic Sea. Phylogenetic analysis of nirS genes from the Baltic Sea and of sequences from marine habitats all over the world indicated distinct denitrifier communities that grouped mostly according to their habitats. We suggest that these subgroups of denitrifiers had developed after selection through several factors, i.e. their habitats (water column or sediment), impact by prevalent environmental conditions and isolation by large geographic distances between habitats.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Denitrifier communities in the Baltic Sea

NirS-containing denitrifier communities in the water column and sediment of the Baltic Sea S. Falk, M. Hannig, G. Braker, R. Wardenga, M. Köster, K. Jürgens, and C. Gliesche Institute for Ecology, Ernst-Moritz-Arndt-University Greifswald, Schwedenhagen 6, 18565 Kloster, Hiddensee, Germany Baltic Sea Research Institute, Seestrasse 15, 18119 Warnemünde, Germany Max Planck Institute for Terrestria...

متن کامل

Diversity of nitrite reductase genes (nirS) in the denitrifying water column of the coastal Arabian Sea

Denitrification often occurs in the water column, underlying zones of intense productivity and decomposition in upwelling regions. In the denitrifying zone off the southwest coast of India, high concentrations of nitrite (>15 μM) and nitrous oxide (>500 nM) have been reported near the sediment-water interface (<80 m). We investigated the chemical and molecular indicators of denitrification alon...

متن کامل

Comparative analysis of ammonia monooxygenase (amoA) genes in the water column and sediment-water interface of two lakes and the Baltic Sea.

The functional gene amoA was used to compare the diversity of ammonia-oxidizing bacteria (AOB) in the water column and sediment-water interface of the two freshwater lakes Plusssee and Schöhsee and the Baltic Sea. Nested amplifications were used to increase the sensitivity of amoA detection, and to amplify a 789-bp fragment from which clone libraries were prepared. The larger part of the sequen...

متن کامل

Reconstructing ecosystem functions of the active microbial community of the Baltic Sea oxygen depleted sediments.

Baltic Sea deep water and sediments hold one of the largest anthropogenically induced hypoxic areas in the world. High nutrient input and low water exchange result in eutrophication and oxygen depletion below the halocline. As a consequence at Landsort Deep, the deepest point of the Baltic Sea, anoxia in the sediments has been a persistent condition over the past decades. Given that microbial c...

متن کامل

Concurrent activity of anammox and denitrifying bacteria in the Black Sea

After the discovery of ANaerobic AMMonium OXidation (anammox) in the environment, the role of heterotrophic denitrification as the main marine pathway for fixed N loss has been questioned. A 3 part, 15 month time series investigating nitrite reductase (nirS) mRNA transcripts at a single location in the Black Sea was conducted in order to better understand the activity of anammox and denitrifyin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007